LM
Levenberg-Marquardt法 (LM法) に基づく多焦点Gain
.
LM法はLevenberg1とMarquardt2で提案された非線形最小二乗問題の最適化法, 実装はMadsenのテキスト3に基づく.
use autd3::prelude::*;
use autd3_gain_holo::{EmissionConstraint, NalgebraBackend, Pa, LM, LMOption};
use std::num::NonZeroUsize;
use std::sync::Arc;
fn main() {
let x1 = 0.;
let y1 = 0.;
let z1 = 0.;
let x2 = 0.;
let y2 = 0.;
let z2 = 0.;
let backend = Arc::new(NalgebraBackend::default());
let _ =
LM {
foci: vec![
(Point3::new(x1, y1, z1), 5e3 * Pa),
(Point3::new(x2, y2, z2), 5e3 * Pa),
],
option: LMOption {
eps_1: 1e-8,
eps_2: 1e-8,
tau: 1e-3,
k_max: NonZeroUsize::new(5).unwrap(),
initial: vec![],
constraint: EmissionConstraint::Clamp(EmitIntensity::MIN, EmitIntensity::MAX),
..Default::default()
},
backend,
};
}
#include<autd3.hpp>
#include "autd3/gain/holo.hpp"
using namespace autd3;
using gain::holo::Pa;
int main() {
const auto x1 = 0.0;
const auto y1 = 0.0;
const auto z1 = 0.0;
const auto x2 = 0.0;
const auto y2 = 0.0;
const auto z2 = 0.0;
const auto backend = std::make_shared<gain::holo::NalgebraBackend>();
auto g = gain::holo::LM(
std::vector<std::pair<Point3, gain::holo::Amplitude>>{
{Point3(x1, y1, z1), 5e3 * Pa},
{Point3(x2, y2, z2), 5e3 * Pa},
},
gain::holo::LMOption{
.eps_1 = 1e-8,
.eps_2 = 1e-8,
.tau = 1e-3,
.k_max = 5,
.initial = {},
.constraint = gain::holo::EmissionConstraint::Clamp(
std::numeric_limits<EmitIntensity>::min(),
std::numeric_limits<EmitIntensity>::max()),
},
backend);
return 0; }
using AUTD3Sharp.Gain.Holo;
using AUTD3Sharp;
using AUTD3Sharp.Utils;
using static AUTD3Sharp.Units;
var x1 = 0.0f;
var y1 = 0.0f;
var z1 = 0.0f;
var x2 = 0.0f;
var y2 = 0.0f;
var z2 = 0.0f;
var backend = new NalgebraBackend();
new LM(
foci: [
(new Point3(x1, y1, z1), 5e3f * Pa),
(new Point3(x2, y2, z2), 5e3f * Pa)
],
option: new LMOption
{
Eps1 = 1e-8f,
Eps2 = 1e-8f,
Tau = 1e-3f,
KMax = 5,
Initial = [],
EmissionConstraint = EmissionConstraint.Clamp(EmitIntensity.Min, EmitIntensity.Max),
},
backend: backend
);
import numpy as np
from pyautd3 import EmitIntensity
from pyautd3.gain.holo import LM, EmissionConstraint, LMOption, NalgebraBackend, Pa
x1 = 0.0
y1 = 0.0
z1 = 0.0
x2 = 0.0
y2 = 0.0
z2 = 0.0
backend = NalgebraBackend()
LM(
foci=[(np.array([x1, y1, z1]), 5e3 * Pa), (np.array([x2, y2, z2]), 5e3 * Pa)],
option=LMOption(
eps_1=1e-8,
eps_2=1e-8,
tau=1e-3,
k_max=5,
initial = None,
constraint=EmissionConstraint.Clamp(EmitIntensity.MIN, EmitIntensity.MAX),
),
backend=backend,
)
各パラメータのデフォルトは上記の通り. パラメータの詳細はテキスト3を参照されたい.
1
Levenberg, Kenneth. “A method for the solution of certain non-linear problems in least squares.” Quarterly of applied mathematics 2.2 (1944): 164-168.
2
Marquardt, Donald W. “An algorithm for least-squares estimation of nonlinear parameters.” Journal of the society for Industrial and Applied Mathematics 11.2 (1963): 431-441.
3
Madsen, Kaj, Hans Bruun Nielsen, and Ole Tingleff. “Methods for non-linear least squares problems.” (2004).