LM

Source

Levenberg-Marquardt法 (LM法) に基づく多焦点Gain. LM法はLevenberg1とMarquardt2で提案された非線形最小二乗問題の最適化法, 実装はMadsenのテキスト3に基づく.

use autd3::prelude::*;
use autd3_gain_holo::{EmissionConstraint, NalgebraBackend, Pa, LM, LMOption};
use std::num::NonZeroUsize;
use std::sync::Arc;

fn main() {
let x1 = 0.;
let y1 = 0.;
let z1 = 0.;
let x2 = 0.;
let y2 = 0.;
let z2 = 0.;
let backend = Arc::new(NalgebraBackend::default());
let _ = 
LM {
    foci: vec![
        (Point3::new(x1, y1, z1), 5e3 * Pa),
        (Point3::new(x2, y2, z2), 5e3 * Pa),
    ],
    option: LMOption {
        eps_1: 1e-8,
        eps_2: 1e-8,
        tau: 1e-3,
        k_max: NonZeroUsize::new(5).unwrap(),
        initial: vec![],
        constraint: EmissionConstraint::Clamp(EmitIntensity::MIN, EmitIntensity::MAX),
        ..Default::default()
    },
    backend,
};
}
#include<autd3.hpp>
#include "autd3/gain/holo.hpp"

using namespace autd3;
using gain::holo::Pa;

int main() {
const auto x1 = 0.0;
const auto y1 = 0.0;
const auto z1 = 0.0;
const auto x2 = 0.0;
const auto y2 = 0.0;
const auto z2 = 0.0;
const auto backend = std::make_shared<gain::holo::NalgebraBackend>();
auto g = gain::holo::LM(
    std::vector<std::pair<Point3, gain::holo::Amplitude>>{
        {Point3(x1, y1, z1), 5e3 * Pa},
        {Point3(x2, y2, z2), 5e3 * Pa},
    },
    gain::holo::LMOption{
        .eps_1 = 1e-8,
        .eps_2 = 1e-8,
        .tau = 1e-3,
        .k_max = 5,
        .initial = {},
        .constraint = gain::holo::EmissionConstraint::Clamp(
            std::numeric_limits<EmitIntensity>::min(),
            std::numeric_limits<EmitIntensity>::max()),
    },
    backend);
return 0; }
using AUTD3Sharp.Gain.Holo;

using AUTD3Sharp;
using AUTD3Sharp.Utils;
using static AUTD3Sharp.Units;
var x1 = 0.0f;
var y1 = 0.0f;
var z1 = 0.0f;
var x2 = 0.0f;
var y2 = 0.0f;
var z2 = 0.0f;
var backend = new NalgebraBackend();
new LM(
    foci: [
             (new Point3(x1, y1, z1), 5e3f * Pa),
             (new Point3(x2, y2, z2), 5e3f * Pa)
    ],
    option: new LMOption
    {
        Eps1 = 1e-8f,
        Eps2 = 1e-8f,
        Tau = 1e-3f,
        KMax = 5,
        Initial = [],
        EmissionConstraint = EmissionConstraint.Clamp(EmitIntensity.Min, EmitIntensity.Max),
    },
    backend: backend
);
import numpy as np
from pyautd3 import EmitIntensity
from pyautd3.gain.holo import LM, EmissionConstraint, LMOption, NalgebraBackend, Pa

x1 = 0.0
y1 = 0.0
z1 = 0.0
x2 = 0.0
y2 = 0.0
z2 = 0.0
backend = NalgebraBackend()
LM(
    foci=[(np.array([x1, y1, z1]), 5e3 * Pa), (np.array([x2, y2, z2]), 5e3 * Pa)],
    option=LMOption(
        eps_1=1e-8,
        eps_2=1e-8,
        tau=1e-3,
        k_max=5,
        initial = None,
        constraint=EmissionConstraint.Clamp(EmitIntensity.MIN, EmitIntensity.MAX),
    ),
    backend=backend,
)

各パラメータのデフォルトは上記の通り. パラメータの詳細はテキスト3を参照されたい.

1

Levenberg, Kenneth. “A method for the solution of certain non-linear problems in least squares.” Quarterly of applied mathematics 2.2 (1944): 164-168.

2

Marquardt, Donald W. “An algorithm for least-squares estimation of nonlinear parameters.” Journal of the society for Industrial and Applied Mathematics 11.2 (1963): 431-441.

3

Madsen, Kaj, Hans Bruun Nielsen, and Ole Tingleff. “Methods for non-linear least squares problems.” (2004).